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ABSTRACT
Many tasks in graph machine learning, such as link prediction and node classification,
are typically solved using representation learning. Each node or edge in the network
is encoded via an embedding. Though there exists a lot of network embeddings for
static graphs, the task becomes much more complicated when the dynamic (i.e.,
temporal) network is analyzed. In this paper, we propose a novel approach for dynamic
network representation learning based on Temporal Graph Network by using a highly
custom message generating function by extracting Causal Anonymous Walks. We
provide a benchmark pipeline for the evaluation of temporal network embeddings.
This work provides the first comprehensive comparison framework for temporal
network representation learning for graph machine learning problems involving node
classification and link prediction in every available setting. The proposed model
outperforms state-of-the-art baseline models. The work also justifies their difference
based on evaluation in various transductive/inductive edge/node classification tasks. In
addition, we show the applicability and superior performance of our model in the real-
world downstream graph machine learning task provided by one of the top European
banks, involving credit scoring based on transaction data.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Network Science and Online
Social Networks, World Wide Web and Web Science
Keywords Temporal networks, Dynamic networks, Temporal network embedding, Temporal
random walks, Temporal graph attention

INTRODUCTION
It is crucial for banks to predict possible future interactions between companies: knowing
that one company will be a client of another allows offering financial and other services. It
is also important to have comprehensive and meaningful information about each client. If
this knowledge is expressed as client embeddings, then the problem of their compactness
and expressiveness emerges. Banks own large datasets of financial interactions between
their clients, which can be used for training and testing models solving graph-related
problems like prediction of future transactions or fraud detection.
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Graph structures that describe dependencies between entities are widely used to
improve the effectiveness of machine learning models trained on streaming data. In
order to use conventional machine learning frameworks, it is necessary to develop a vector
representation of the graph (such as network embeddings) by combining attributes from
nodes (labels, text, etc.) and edges (i.e., weights, labels, timing, interaction context) and
taking into account the dynamic graph structure appearing in real-world problems.

In recent years, existing graph embedding models have been actively studied to apply
deep learningmethods for network representation learning.Hundreds of graph embeddings
models have been developed and applied to different domains, especially in computer
vision, text processing, recommendation systems, and interdisciplinary research in biology
and genetics (Makarov et al., 2021). All approaches are united by a common problem
statement, which is to learn an encoder model for the selected type of networks and
important graph statistics. This will make it possible to apply standard machine learning
frameworks and at the same time generalize attribute and structural information from the
data.

Recently, modern machine learning methods have been proposed for processing
networks and solving various prediction tasks on the local level (Kipf & Welling, 2017;
You et al., 2018; Veličković et al., 2017; Ding, Tang & Zhang, 2018). Examples include node
classification and link prediction for nodes both seen and unseen during model training. In
practice, they represent important problems on large dynamic network data. Transaction
data between companies and bank clients can help predict future transactions, user search
history on the Web can be used to generate contextual advertising instances, disease
transmission data can be used to predict epidemics dynamics.

Although most previous works on graph representation learning mainly focus on static
graphs (with a fixed set of nodes and edges), there are many real-world applications in
which graphs evolve over time, like social networks or sales data. One particularly common
sub-type of graphs used to represent such structures is a temporal graph. It is a graph
in which each edge has a time index, indicating a moment in time when the interaction,
represented by an edge, occurred.

There are various problems when switching from static to dynamic networks (Rosenberg,
1981), among which computational complexity and variance of connectivity patterns over
time (previous models could only exploit temporal difference statistics in the features
domain like in works by Makarov, Bulanov & Zhukov (2016); Makarov et al. (2017);
Makarov et al. (2019) or tackle temporal information in terms of missing link prediction
(Makarov et al., 2018; Makarov & Gerasimova, 2019b; Makarov & Gerasimova, 2019a). In
addition, for practical applications, one needs to have models suitable for inference in
inductive settings which enable proper prediction on the fly with rear overall model
retraining for large network data (Kazemi et al., 2020).

In this work, we describe a novel network embedding that combines the best elements
of the efficient Temporal Graph Network embedding (TGN) (Rossi et al., 2020) and
Causal AnonymousWalks (CAW) (Wang et al., 2021b). We choose the TGN as a backbone
because it generalizes most existing temporal graph embeddingmodels via flexible modular
architecture. It allows updating node memory in a fast and expressive manner. Also, more
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modern models like APAN (Wang et al., 2021a) or HiLi (Wang et al., 2021a) follow a
similar paradigm of passing messages through the memory module. The CAW provides
an opposite view on the graph evolution problem. It rejects the idea of memory and
anonymizes each node. Instead, it aimed to build such a model, which can implicitly
exploit laws of specific graph evolution ignoring node identities. As a result, CAW is
unable to create node embedding but can significantly impact model quality by taking into
account changes in graph structure. Fusion of two opposite ideas allows to build more
precise network encoding methods.

To properly evaluate the proposed model, a unified experimental framework for
temporal graphs is required. Most of the papers use different approaches to stream the
graph events, mask nodes and edges and sample negative examples. We propose the
pipelines for evaluation temporal embedding techniques in downstream graph machine
learning tasks. It allows flexible integration of various models and different temporal
network data under a unified evaluation framework shown in Fig. 1.

Our main contributions with this work consist of the following:
1. Novel temporal network embedding model achieving state-of-the-art results in various

temporal graph machine learning tasks;
2. Standardized temporal network embedding evaluation framework and comparison of

state-of-the-art models under common training setting, providing new insights and
clarification of real-world performance compared to reported in the original research
articles.
In addition, we prove the effectiveness of the proposed pipeline and its sub-modules

via extensive ablation study and provide the industrial application of the proposed
approach involving the transaction data of a major European bank. We showed that
feature enrichment of temporal attention over temporal edge random walks improves
quantitative and qualitative results in the real-world application of machine learning tasks
on a banking graph.

PRELIMINARIES & PROBLEM STATEMENT
In order to proceedwith the problem statement, we describe basic concepts used throughout
the text following notations byKazemi et al. (2020).We useG(V,E) to denote a static graph,
where V is the set of its vertices, and E is the set of edges of the graph, andA is an adjacency
matrix of that graph.

A dynamic graph, in general, is a graph, which structure and node/edge attributes change
over time. Generally, events may contain an updated state of the node. However, in our
experiments, we consider all node features to be static and represent them as a matrix X
with |V | rows and k columns, where k is the node feature dimensionality.

In this work, we will use dynamic graph and temporal graph as interchangeable terms.
We outline two possible kinds of dynamic graph representations below. There are two
standard views on temporal network representation as a data structure:

• Discrete-time dynamic graph (DTDG) or snapshot-like graph is a sequence of snapshots
from a dynamic graph, sampled at regularly-spaced times. Formally, we define DTDG
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Figure 1 Flowchart of the evaluation framework.
Full-size DOI: 10.7717/peerjcs.858/fig-1

as a set {G1, G2, . . . , GT , }, where Gt
={V t ,E t

} is the graph at moment t , V t and E t are
sets of nodes and edges in Gt , respectively.
• Continuous-time dynamic graph (CTDG) or transaction-/stream-like graph is denoted
by pair (G,O), where G is a static graph representing an initial state of dynamic
graph at time t0, and O is event stream of events/transaction, denoted by tuple
(event_coordinates,event_data,timestamp), where event_coordinates are ordered pairs of
nodes, between which the event has occurred, and event_data is any additional data on
the event.

Event stream may be represented as concatenation of index matrix containing
transactions vectors eij(t )= (vi,vj,t ) with source and target node IDs, timestamp, and
temporal edges’ features.

We will refer to both CTDG and DTDG as dynamic graphs, although we will focus more
on CTDGs as a natural representation of transactions in banking networks, which appear
in non-uniform timestamps and represent a real-world streaming structured data, rather
than discretized snapshot representation DTDG.

Finally, in our study, we consider such temporal graph machine learning problems as
node classification and link prediction, both in transductive and inductive settings:

• Transductive edge prediction evaluates whether a transaction between two priorly known
nodes occurred at a given time;
• Inductive edge prediction predicts a transaction between known and unknown nodes at
a given time;
• Transductive node classification determines the dynamic label of a priorly known node;
• Inductive node classification determines the dynamic label of a priorly unknown node.
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All the mentioned above problems on the chosen datasets can be formulated as binary
classification with effortless extension to a multi-class case (Savchenko, 2016), which is
evaluated via AUC ROC quality metric measuring performance for the classification at
various error threshold settings.

RELATED WORK
In this section, we overview state-of-the-art methods of constructing network embeddings
for static and dynamic networks using taxonomies suggested by Makarov et al. (2021) and
Barros et al. (2021). We focus on dynamic network embedding as an evolutionary process
of graph formation.

Static graph embedding methods
When constructing network embeddings via solving the optimization problem, researchers
usually focus on three main concepts: matrix factorization, node sequence methods, and
methods based on deep learning. We consider the snapshot method, in which the current
snapshot of a temporal network is taken, and missing links are predicted based on the
available graph information.

Factorization techniques can be applied to different graph representations and
optimized for different objectives, such as direct decomposition of the graph adjacency
matrix (Kruskal, 1978; Deerwester et al., 1990; Martinez & Kak, 2001) or approximating
proximity matrix (Roweis & Saul, 2000; Tenenbaum, De Silva & Langford, 2000). Despite
factorizations being widely used in recommender systems, these models have high
computational complexity and are difficult to extend for inductive learning.

Inspired by Mikolov et al. (2013), sequence-based methods aim to preserve local node
neighborhoods based on random walks. The two most prominent examples of models
in this class are DeepWalk (Perozzi, Al-Rfou & Skiena, 2014) and Node2vec (Grover &
Leskovec, 2016). Anonymous graphs walks have been proposed by Ivanov & Burnaev
(2018). However, their adaptations to temporal random walks have limited applications
since they require retraining after adding new edges.

Recently, advances in geometric deep learning led to the creation of graph neural
networks combining the best out of both fully connected and convolutional neural network
architectures.Most of them use themethod of neighborhood information aggregation from
graph convolution network (GCN) (Kipf & Welling, 2017) and extend it with classical deep
learning architectures such as recurrent neural network (RNN) (You et al., 2018), attention
mechanism (Veličković et al., 2017), generative adversarial network (GAN) (Ding, Tang &
Zhang, 2018), and graph transformers (Yun et al., 2019).

Recent studies show that a combination of deep learning models with semi-supervised
techniques gives state-of-the-art results in terms of scalability, speed, and quality in
downstream tasks (Makarov et al., 2021; Makarov, Makarov & Kiselev, 2021; Makarov,
Korovina & Kiselev, 2021). However, static models are limited by the necessity to retrain
the model with each significant change of graph structure.
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Dynamic graph embedding methods
Methods for dynamic graphs are often extensions of those for static ones, with an additional
focus on the temporal dimension and update schemes (Pareja et al., 2020). All these
techniques can be categorized according to which model of graph evolution representation
is chosen: Continuous-Time Dynamic Graphs(CTDG) or Discrete-Time Dynamic Graphs
(DTDG).

DTDG-focused methods
Most of the early work on dynamic graph learning focuses exclusively on discrete-
time dynamic graphs. Such models encode snapshots individually to create an array
of embeddings or aggregate the snapshots in order to use a static method on them Sharan
& Neville (2008). All DTDG models can be divided into several categories, according to
their approach for dealing with the temporal aspect of a dynamic graph.

Single-snapshot models
Static models are used on the graph snapshots to make predictions for the next one
(DNE (Du et al., 2018), TO-GAE (Bonner et al., 2018), DynGEM (Goyal et al., 2018)).
Another way of implementing this methodology, called TI-GCN (Time Interval Graph
Convolutional Networks) via residual architectures. It was proposed in SemiGraph (Hisano,
2018) and TI-GCN (Xiang, Xiong & Zhu, 2020). Besides single snapshots, these works use
information from network formation (Hisano, 2018) represented by edge differences of
several snapshots.

Multi-snapshot models
The authors of TemporalNode2vec (Haddad et al., 2020) and Dyn-VGAE (Mahdavi,
Khoshraftar & An, 2019) propose to learn structural information of each snapshot by
separate models. Haddad et al. (2020) suggest to compute individual sets of random walks
for each snapshot in Node2Vec fashion and learn final node embeddings jointly, while
in Mahdavi, Khoshraftar & An (2019) autoencoders for each snapshot were trained in a
consistent way to preserve similarity between consequent graph updates.

RNN-based models. In contrast to previous methods, models in this category aim to
capture sequential temporal dependencies mostly by feeding output node embeddings or
graph structure of each snapshot into RNN. Thus, GCN is combined with long short-
term memory (LSTM) in CD-GCN (Manessi, Rozza & Manzo, 2020), GC-LSTM (Chen et
al., 2018), GCRN (Seo et al., 2016) or gated recurrent units (GRU) in T-GCN (Zhao et al.,
2019), DCRNN (Li et al., 2018). Following these ideas, authors of TNA (Bonner et al., 2019)
and Res-RGNN (Chen et al., 2019) added residual connections to propagate topological
information between neighboring snapshots. Recently, some papers (GCN-GAN (Lei et
al., 2019), DynGAN (Maheshwari et al., 2019)) have proposed to use GANs in combination
with RNNs. On the other hand, EvolveGCN (Pareja et al., 2020) argues that directly
modeling dynamics of the node representation will hamper the model performance on
graphs with dynamic node sets. Instead of treating node features as the input to RNN,
it feeds the weights of the GCN into the RNN. Hu et al. (2020) proposed a model that
balances between long- and short-term temporal patterns. It encodes long-term dynamics
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by a GNN over a static graph and short-term dynamics by LSTM over several most recent
node neighbors.

Temporal graph attention. Inspired by advances in natural language processing (NLP),
models in this class leverage attention-mechanism to capture temporal information.
Authors of A3T-GCN (Bai et al., 2020), LRGCN (Li et al., 2019), HTGN (Menglin et al.,
2021) and DyHATR (Xue et al., 2020) follow the RNN module by an attention mechanism
to take into account the contribution of its hidden states, while DySAT (Sankar et al., 2020)
leverage self-attention mechanism without RNN stage.

Convolutional models. Although previous models can capture sequential dependencies,
in practice, most of them use a limited number of historical snapshots. So, convolutions
are used to propagate information between snapshots in STGCN(Yu, Yin & Zhu, 2018),
TemporalGAT (Fathy & Li, 2020), MTNE (Liu et al., 2021).

Despite promising results, most of the models struggle from two disadvantages. First,
methods lose the order of edge formation and reflect only partial information on network
formation (Xiang, Xiong & Zhu, 2020). Second, computing static representations on each
snapshot is inefficient in terms of memory usage on large graphs (Cui et al., 2021) and can
not be used in practical applications.

CTDG-focused methods
Continuous-time dynamic graphs require different approaches as it becomes
computationally difficult to work with the entirety of such graphs after each interaction
(Goel et al., 2019). Below we provide a more general classification of CTDG-focused
methods, comparing with DTDG-focused ones based on approaches used for learning
evolution patterns.

Temporal random-walks models. The approach implies including the time dependency
directly in a sequence of nodes generated by random walks. Such methods create a corpus
of walks over time (so-called ’’temporal random walks’’) with respect to the order of
nodes/edges appearance in the graph. Based on this idea, authors of EHNA (Huang et al.,
2020b) leverage a custom attentionmechanism to learn the importance between a node and
its temporal random-walk-based neighbors. CTDNE (Nguyen et al., 2018) proposes several
methods to select the subsequent nodes connected to a starting one. A promising method
for link prediction task was proposed by the authors of CAW (Wang et al., 2021b) who
have developed Causal Anonymous Walks (CAWs), constructed from temporal random
walks. CAWs adopt a novel anonymization strategy that replaces node identities with the
hitting counts of the nodes based on a set of sampled walks to keep the method inductive.
The model outperforms previous methods in both inductive and transductive settings.
However, it is aimed to catch the correlation information between interacting nodes to
learn temporal motifs. Such property is essential to catch the graph structure evolution
specificity. Nevertheless, it does not construct the node embedding required by the practical
downstream tasks like fraud detection.

Local neighborhood models. When interactions happen (node or edge adding and
removal), models in this class update embeddings of the relevant nodes by aggregating
information from their new neighborhoods. In DyGCN (Cui et al., 2021) and TDGNN
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(Qu et al., 2020), the authors utilize a GCN-based aggregation scheme and propagate
changes to higher-order neighbors of interacting nodes. To cope with information
asymmetry, the authors of HiLi (Chen et al., 2021) propose to determine the priority
of the nodes that receive the latest interaction information. JODIE (Kumar, Zhang &
Leskovec, 2019) and TGAT (Xu et al., 2020) embed dynamic network for recommendation
systems in similar ways. MNCI (Liu & Liu, 2021) uses additional temporal embedding
of node’s community aggregating it with node’s neighborhood embedding via GRU.
Several recent works(DyRep (Trivedi et al., 2019), LDG (Knyazev, Augusta & Taylor, 2019),
M2DNE (Lu et al., 2019)) consider interactions between nodes as stochastic processes with
probabilities depending on the network statistics.

Memory-based models. The core idea of this class of temporal network embeddings
lies in extending existing models by using special memory modules storing a history of
interactions for each node. Methods vary from updating LSTM (DGNN by Ma et al.
(2020)) to using augmented matrices of interactions (TigeCMN by Zhang et al. (2020),
designed for classification of nodes with labels fixed over time and thus, not suitable for
our general-purpose framework). APAN (Asynchronous Propagation Attention Network)
model (Wang et al., 2021a) aims to store detailed information about k-hop neighborhood
interactions of each node in so-called ‘‘mailboxes’’. The recently developed Temporal
Graph Network (TGN) proposed by Rossi et al. (2020) proposes a flexible framework,
which consists of several independent modules and generalizes other recent CTDGs-
focused models such as TGAT (Xu et al., 2020), JODIE (Kumar, Zhang & Leskovec, 2019),
DyRep (Trivedi et al., 2019). Combining the advantages of JODIE and temporal graph
attention(TGAT), TGN introduces the node-wise memory into the temporal aggregate
phase of TGAT, showing state-of-the-art for industrial tasks results.

Because of the potential of CTDG-based models (Gao & Ribeiro, 2021) and necessity to
apply the model to transaction data, we focus on developing a model in this class, while
keeping in mind efficient DTDG models (Xiang, Xiong & Zhu, 2020). In what follows, we
describe the idea of improving existing state-of-the-art CTDG models by properly fusing
memory-based, neighborhood and interaction information under unified framework, thus
combining multiple best practices of CTDG methods.

PROPOSED APPROACH
As stated above in our literature survey, the best-known model for temporal graph
prediction tasks, namely, TGN (Rossi et al., 2020), relies primarily on propagating
information (‘‘message’’) through edges and generates node embeddings from occurring
edges in a straightforward manner. At the same time, it was noticed that the CAW
(Wang et al., 2021b) shows excellent performance in link prediction tasks by learning edge
representations. Moreover, CAW encodes temporal network motifs, which can be possibly
used to explain its predictions being an important property of the model as mentioned
by Holzinger et al. (2021). Unfortunately, CAW cannot be directly applied to extract node
embeddings and, consecutively, downstream graph machine learning tasks, such as node
classification.
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Hence, in this paper, we propose a novel network embedding taking the best out of the
TGN framework and the CAW edge encodings (Fig. 2) to improve the quality of edge and
node classification. Our contribution is to leverage the highly informative edge embedding
generated in CAW. This will allow us to refine various functions of the TGN framework,
including message extractor, embedding module, and memory aggregator.

Model details
Below, we describe our model by listing and explaining all modules in a consecutive
fashion. In the following descriptions and equations, LSTM refers to the Long Short-Term
Memory type RNN, GRU is the Gated Recurrent Unit, ‘‘attn’’ and ‘‘self-attn’’ is attention
and self-attention, respectively. The temporal random walk is crucial to handle dynamic
networks. It is represented as a series of node-time pairs started from the specific node i
and sorted by time in descending order. The consequent pairs represent the temporal edge
in a dynamic graph. Formally, it could be denoted by

W (i,M )={(w0,t0),(w1,t1),...,(wM ,tM )},w0= i,t0> t1> ···> tM ,

(wm−1,wm,tm)∈ E,m∈ {1,2,...,M }. (1)

where wm ∈V is the node entered at step m, tm is the time of step m, (wm,tm) is the m-th
node-time pair. In future, we will omit the parameters i,M for simplicity and refer to the
elements of the m-th step asW (1)

m =wm andW (2)
m = tm.
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The temporal k-hop neighborhood of ith node before time t is a set of nodes which can
be reached from i in k steps via traversing in depth along the edges existing prior to time
t , without regard for their direction. We will refer this set as ηki . The traversal starts from
w0= i visiting at most k+1 nodes in each walk. Thus, wj ∈ η

k
i , if there exists a walk in the

traversal from w0 to wj . More formally, ηki can be defined as follows:

ηki ={(w,t )∈W (i,k+1),∀W }. (2)

Neighborhood Edge Feature (NEF) generator
This trainable module and its integration in the following modules are intended to improve
the predictive capabilities of the original TGN framework, which is our core contribution.
It generates highly informative feature representations of pairs of nodes for any given
moment in time. For a pair of nodes i and j, the output of this module as NEFij(t ) is
computed as follows.

At first, we sample an equal number K > 1 of the time-inverse walks for both nodes
in order to capture information about the edge neighborhoods. All sampled walks have
identical lengths (1–2 steps typically). A constant decay hyperparameter, which regulates
how strongly the sampling process prioritizes more recent connections, is used to sample
all walks.

The walk sets Si and Sj are generated for edge ij between nodes i and j.Si consists of
sampled time-inverse walksWk,k ∈ {1,...,K }. Each edge for each walk is sampled with the
probabilities proportional to exp(α1t ), where α is the decay parameter, 1t = t − tp< 0
(t ,tp are the timestamps of the edge under sampling and the edge previously sampled,
respectively).

The next step makes the sampled walks anonymous to limit extracted information to the
edge neighborhood alone. Each node from Si is replaced by a pair of vectors that encode a
positional frequency of the node in each corresponding position of walks in Si and Sj . The
encoding vector of positional frequencies relative to the walks of i for node w is defined as:

g (w,Si)={|{W |W ∈ Si,w =W (1)
m ,m∈ {1,...,M }}|}. (3)

This equation simply specifies that the node index w is encoded as a vector, so that each
its m-th component is equal to the number of times where w is the m-th node of some
walk in Si.

The anonymization of walks (Wang et al., 2021b) is achieved by using the defined
function to transform node indices in walks. Each position in any walk of Si containing w
is replaced by

I ij(w)={g (w,Si),g (w,Sj)}. (4)

Similarly, any value in walks of Sj filled by w is replaced with I ji(w). In the remaining
part of this section, we write I = I ij , assuming the known orientation of the edge.

The remaining steps simply attempt to transform the ‘‘anonymous walk’’ representation
of the node pair to a more compressed and usable state. Each obtained representation
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of each position of each walk, i.e., pairs of {g (w,Sj),g (w,Si)}, are fed through separate
instances of the same two-layered multi-layered perceptron (MLP) and sum-pooled:

f1(I (w))=MLP(g (w,Si))+MLP(g (w,Sj)). (5)

Then, this representation is concatenated with the time-difference encoding and node
or edge features of the corresponding step:

h(I (w))= concat(f1(I (w)),f2(1t ),X) (6)

where f2(1t ) is time Fourier features, and X is a concatenation of all relevant node and
edge attributes of the corresponding walk step. Finally, each walk with encoded positions
is passed to an RNN (usually, Bi-LSTM):

enc(W )=Bi-LSTM({h(I (wm)),m∈ {1,...,M }}), (7)

where wm being m-th position of walk W .
The encoded walks are aggregated across all walks for the node pair ij:

NEFij(t )=
1

|Si∪Sj |

∑
W∈(Si∪Sj )

agg(enc(W )), (8)

where |Si∪Sj | is amount of walks in a set Si∪Sj , and agg is either self-attention module or
identity for mean pooling aggregation.

Message store
In order to apply the gradient descent, a memory of a node should be updated after it is
passed as a training instance. Let’s say an event associated with the ith node has occurred,
e.g., an edge involving i has been passed for training in the current batch. Then, all
information about the batch transactions involving node i will be recorded in the message
store after the batch inference, replacing the existing records for i. This information is used
and updated during the processing of the next batch involving i.

Message generator
When the model processes a batch containing a node, all transaction information about
edges associated with this node is pulled. For each transaction between i and some other
node j at a time t , a message for a node i is computed as a concatenation of the current
memory vectors of the nodes, edge features, time-related features, and neighborhood edge
features of the corresponding edge:

mi(t )= concat (si(t−),sj(t−),t− t−,eij(t ),NEFij(t )), (9)

where ij is the index of a transaction between nodes i and j, si(t−) is a memory state of node
i at time t−i of last memory update for node i, and NEFij(t ) is a neighborhood edge feature
vector for edge ij. The usage of NEF features here is our novel idea aimed to include more
information about the type of the update message. The generated messages will update
memory states of the batch nodes. Note that, aside from the basic and non-trainable
concatenation, other choices for the message function, like MLPs are possible.
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Message aggregator
To perform a memory update on a node at time t , its message representation is obtained
by aggregating all currently stored messages timestamps t1< t2< ... < t which are related
to this node:

mi(t )= aggr(mi(t1),mi(t2),...,mi(t )). (10)

Here aggregation function aggr can be computed as a mean of generated messages. It is
still possible to use the most recent message mi(t ) as a value of mi(t ).

Memory updater
The message generator and aggregator let the model encode useful transaction information
as memory vectors. In particular, the memory state vector for node i is updated at time t by
applying an RNN-type model to the concatenation of the received message and previous
memory state:

si(t )=RNN(mi(t ),si(t−)) (11)

where RNN is either GRU or LSTM, and initial state s(0) is initialized with a random
vector.

Embedding generator
This module generates the node embedding based on memory states of the node and its
k-hop neighborhood, features of the neighborhood, and NEF representations of ‘‘virtual’’
edges between the node and its direct neighbors. We include NEF features only to the
direct neighbors due to its computational complexity. However, this does not affect our
model because the first-order neighbors are sufficient. Resulting node embeddings can
be viewed as autonomous node representations for classification (Savchenko, 2017). We
propose, similarly to message generator, to add NEF features to node i in order to let the
model better discriminate neighbors on their relevance or type:

zi(t )=
∑
j∈η1i

h0(si(t ),sj(t ),eij,vi(t ),vj(t ),NEFij(t ))

+

∑
j∈ηki ,k>1

h1(si(t ),sj(t ),eij,vi(t ),vj(t )), (12)

where vi(t ) is a feature vector of node i at time t , and h0 and h1 are the units of the
neural network. It is typical to use MLPs as h0 and h1, but the following concatenation by
self-attention is more preferable to capture complex dependencies involving NEFs.

Embedding decoder
This is the final module, which transforms node embeddings into prediction results
for downstream tasks. In this paper, we always use MLP with 3 layers with only node
embeddings as inputs, and sigmoid or softmax output layers. For example, the multi-class
classification problem (Savchenko, 2016) for node i at time t is solved using the following
equation:

outi(t )= Softmax(MLP(zi(t ))). (13)
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Similarly, the edge prediction task is solved as follows:

outij(t )= Sigmoid(MLP(concat(zi(t )zj(t )))). (14)

Core idea and novelty of proposed model
Let us provide a high-level description of the model (Fig. 2). It learns to generate a temporal
embedding for each node and decode embeddings into inputs for each classification task.
The model assigns a memory vector to each node and generates each node embedding by
aggregating memory vectors and other relevant features in a neighborhood of the node.
Nodememory vectors describe relevant information about interactions involving the node.
They are updated using specified node messages, which, in turn, encode information about
the last transaction involving the node. This design allows employing gradient descent
for training memory and message generating modules. A decoder MLP transforms a pair
of node embeddings into the probability of a temporal edge existing between the nodes.
Similarly, it can be trained to transform a single node embedding into probabilities of the
node belonging to each of the existing classes for a node classification problem.

There are twomain modifications of the proposed model compared to the baseline TGN
framework (Rossi et al., 2020). First, we change the message generating function, which
provides the model with an additional way to differentiate the messages based on their
relevance. The NEF features of an edge contain information about the walk correlation of
the two nodes. As it can be used for very accurate link prediction (Wang et al., 2021b), it
may be also used to classify some messages as being irrelevant, and diminish their effect on
the memory update.

Second, while the original version of the embedding module in Rossi et al. (2020) allows
treating different k-hop neighbors of the node differently if using attention for aggregation,
it might be beneficial to provide the NEF features of connections between the node and its
closest neighbors. As a result, we again take into account the walk correlation between the
node and its neighbor, so that the differences in neighborhood type can be more evident.

EVALUATION FRAMEWORK
In this section, we discuss our research methodology. It involves the evaluation framework,
evaluation pipeline training settings, hyper-parameter choice and description of temporal
networks used for the evaluation.

Pipeline
The main contribution of the proposed framework (Fig. 1) is an easy-to-use unified
data processing toolkit for an accurate evaluation of temporal network embeddings in
downstream tasks under common training settings, which allows removing contradictions
in experimental results reported in research articles in the field. The source code
of this tool is publicly available (https://github.com/HSE-DynGraph-Research-team/
DynGraphModelling). It is focused on transforming any graph into a universal format that
is afterwards fed into the pipeline in either DTDG or CTDG format with the following
features:
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• selection of precise batching options;
• preparing data for both inductive and transductive settings (with support for bipartite
data);
• interfacing with any kind of graph embedding models using an interface for model-
framework communication, treating network embedding models as a black-box, which
is then passed on to such basic methods as train_model, predict_edge_probabilities, etc.

Training settings
Negative sampling
The link prediction problem could be stated as a binary classification task. The general
idea is to predict the presence of positive edges (which are present in the network) and
the absence of negative ones (which represents non-connected pairs of nodes) equally
well. However, most real-world networks are sparse. So the number of absent edges are
significantly higher than the existent ones. It leads us to the imbalanced classification
problem (Savchenko, 2016). The conventional way to handle it is to use the negative edge
sampling strategies. It reduces the number of prevalent class examples to balance the
representation of classes. We follow a standard setting (the same as used in Rossi et al.
(2020)) in which we randomly select one negative sample for each positive one. That
is done by a uniformly sampling set of nodes, which are then considered as destination
points of the edges; the sources of the edges stay the same. In the training phase, the
sampler considers only the training set of nodes; in the validation phase, both training and
validation sets of nodes are used; in the test phase, the sampler considers nodes from the
whole (unmasked) graph.

Batch specification
The model is trained by passing edges (which includes negative samples) in batches sorted
in chronological order.

Training with temporal data masking
We use 80%–10%-10% train-val-test split with randomized training sets, supported via
several data masking schemes. Node masking hides nodes (as well as all connected edges)
from training data. The masked nodes for transductive tasks are also removed from the
validation and test data, while for inductive tasks, masked nodes remain in validation and
test data. Edge masking removes a fixed percentage of random edges from the whole dataset.
We use two options for both masking techniques: the percentage of masked information is
10% and 70%, representing dense and sparse training settings, respectively. In particular,
we report the results for three combinations, in which at least one mask is large, namely
10%–75% node-edge masking, 75%–10% and 75%–75%.

Runs and validation
Each model/setting/dataset combination was run 10 times with random seeds and
node/edge masking.
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Comparison with the state-of-the-art models
To evaluate our model (Fig. 2), we compare it with two kinds of models: the baseline
TGN framework architectures (configured as described in Rossi et al. (2020)) and the
more recent models that use edge features and consider interaction patterns. We chose
DyRep (supporting long-term and short-term time scales of graph evolution and scaling
to large graphs) (Trivedi et al., 2019), Jodie (working with bipartite graphs using node
embeddings for predictive tasks with a future time lag) (Kumar, Zhang & Leskovec, 2019)
and TGAT (using functional time encoding technique) (Xu et al., 2020) as representatives
of the models of the first type. Wang et al. (2021a); Chen et al. (2021); Zhang et al. (2020)
propose other ways of extracting and propagating edge features than our model and are
selected as possibly more potent. It is important to emphasize that the CAWmodel cannot
be compared with here because it was created only for graph reconstruction tasks and
cannot produce node/edge embeddings for the downstream tasks.

Datasets
In our study, we focus on well-known benchmark datasets for temporal networks. Their
descriptive statistics are presented in Table 1, taking into account specifics of computing
statistics for bipartite graphs of user-item interactions (Latapy, Magnien & Del Vecchio,
2008).

Labeled datasets. Both Reddit (Hamilton, Ying & Leskovec, 2017) and Wikipedia
(Foundation, 2010) datasets are bipartite graphs representing interactions between users
(source) and web resources (target), like posting to a subreddit or editing a wiki page. Text
content is encoded as edge features to provide context. Both datasets have a binary target,
indicating whether a user was banned or not.

Non-labeled datasets. The UCI (Cortez & Silva, 2008) dataset contains a communication
history for the students’ forum. The Enron (Leskovec et al., 2008) dataset is constructed
over internal e-mail communication of Enron company employees. The Ethereum dataset
(https://github.com/blockchain-etl/ethereum-etl) contains a directed graph of Ethereum
blockchain transactions, which were collected from larger public BigQuery dataset
(https://cloud.google.com/bigquery/public-data); we collected a dataset containing all
transactions, which occurred during a 9-hour span. All of the non-labeled datasets are
non-bipartite, with no additional features for edges or nodes.

ABLATION STUDY
In this Section, an ablation study of the proposed architecture (Fig. 2) is provided to
explore the impact of each submodule. Below we specify several additional modules added
to interaction features processing pipeline for temporal network embedding via NEF
generator,which outlined in the ‘Neighborhood Edge Feature (NEF) Generator’:

(Msg) NEF-Message concatenating NEF features and messages;
(Emb) NEF-Embed generates embeddings with NEF features;
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Table 1 Descriptive statistics for the datasets. Left to right: whether the graph is bipartite, number of
unique nodes (representing users and items) and edges, labels, average degree, number of edge updates
per node as source/target, and setting for splitting the temporal network into batches for snapshot DTDG
models.

Bipartite Nodes Edges Positive
labels

Avg.
degree

Avg.
temporal
edges

Batch
setting

Reddit Yes 10000/984 672447 366 61.37 67.24/683.38 Daily
Wikipedia Yes 8227/1000 157474 217 17.19 19.14/157.47 Daily
Enron No 185 125236 – 29.06 675.78 1%
UCI No 1900 59836 – 13.04 106.41 1%
Ethereum No 231288 300000 – 2.34 2.59 1%

Table 2 Ablation study on Reddit dataset for inductive edge prediction.

Enabled modules AUC-ROC

(Msg)+(Emb)+(RNN) 0.894±0.034
(Emb) 0.893±0.035
(Msg) 0.888±0.042
(Emb)+(Msg) 0.878±0.051
(Msg)+(RNN) 0.876±0.047
(Emb)+(RNN) 0.870±0.055
TGN baseline 0.865±0.065

(RNN) NEF-LSTM including Bi-LSTM into NEF generator, instead of mean pooling
across walk elements.

Additionally, we consider alternating three important NEF-related hyper-parameters:

• number of generated random walk NEF-samples;
• random walk depth;
• positional dimension of random-walk-related embeddings.

Table 2 contains AUC-ROC (area under curve for receiver operating characteristic)
standard deviation and mean averaged 10 times. The task measured was inductive edge
prediction with default hyperparameters. Rather large and representative Reddit dataset
is used in ablation study. Below we provide performance metrics for seven different
combinations of modules mentioned above, except ‘‘(RNN)’’, which is considered a
standalone TGN with NEF features processing regularization. Here the resulting model
significantly improves the performance of standalone modifications and TGN baseline.

Table 3 depicts the average precision according to different choices parameters of CAW
embedding module. All differences between scores are non-significant. So our model is
stable between parameter choices. However, we recommend using neighbors from two
hops with a small dimension of resulting node embedding to recover network structure
more precisely and omit model over parametrization. Only a few samples of different
random walks are enough.
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Table 3 The average precision of our model depends on parameters.

Data Number of walks Hops Dimension AP

UCI 32 1 10 0.759± 0.000
UCI 32 1 100 0.757± 0.009
UCI 8 2 10 0.764± 0.001
UCI 8 2 100 0.767± 0.010
Wikipedia 32 1 10 0.898± 0.012
Wikipedia 32 1 100 0.909± 0.002
Wikipedia 8 2 10 0.909± 0.007
Wikipedia 8 2 100 0.912± 0.011
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Figure 3 Inductive average precision depends on the epoch number on Reddit dataset.
Full-size DOI: 10.7717/peerjcs.858/fig-3

Figure 3 shows the dynamics of average precision for TGN and our models over a
number of training epochs. Our model shows superior results after each epoch, requiring
fewer data lookups to achieve competitive quality. However, due to the CAW extraction
module, it works significantly slower (70.62s for our model and 10.91s for base TGN),
which is consistent withWang et al. (2021b) results. We leave speeding up CAW extraction
module for future work.

EXPERIMENTAL RESULTS
This section reports the mean AUC-ROC for our model and compares it with other state-
of-the-art models described in ‘Comparison with the state-of-the-art models’. Tables 4 and
5 show results for edge prediction task in transductive and inductive settings respectively.
Best results are given in bold, while second best are underlined. ‘‘Node mask’’ and ‘‘Edge
mask’’ columns specify the portion of nodes or edges used for model testing.

Makarov et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.858 17/27

https://peerj.com
https://doi.org/10.7717/peerjcs.858/fig-3
http://dx.doi.org/10.7717/peerj-cs.858


Table 4 Transductive edge prediction, AUC-ROC. Best results in bold, second-best underlined.

Nodemask Edge mask DyRep Jodie TGAT TigeCMN APAN HiLi TGN Ours

10% 75% 0.774 0.534 0.786 – 0.744 0.714 0.755 0.925
Enron 75% 10% 0.647 0.528 0.711 – 0.719 0.636 0.660 0.921

75% 75% 0.595 0.537 0.590 – 0.719 0.709 0.534 0.919
10% 75% 0.964 0.704 0.973 0.961 0.497 0.948 0.982 0.985

Reddit 75% 10% 0.973 0.825 0.962 0.824 0.502 0.961 0.970 0.968
75% 75% 0.959 0.720 0.936 0.962 0.500 0.950 0.956 0.920
10% 75% 0.770 0.496 0.835 – 0.858 0.546 0.878 0.982

UCI 75% 10% 0.731 0.573 0.826 – 0.867 0.556 0.872 0.977
75% 75% 0.781 0.489 0.834 – 0.855 0.539 0.776 0.960
10% 75% 0.966 0.728 0.970 0.824 0.556 0.863 0.978 0.983

Wikipedia 75% 10% 0.964 0.737 0.961 0.835 0.504 0.874 0.964 0.982
75% 75% 0.962 0.719 0.931 0.818 0.494 0.865 0.918 0.982
10% 75% 0.728 0.914 0.924 – 0.953 – 0.939 0.945

Ethereum 75% 10% 0.868 0.929 0.917 – 0.953 – 0.942 0.950
75% 75% 0.730 0.919 0.920 – 0.946 – 0.928 0.937

Table 5 Inductive edge prediction, AUC-ROC. Best results in bold, second-best underlined.

Nodemask Edge mask DyRep Jodie TGAT TigeCMN APAN HiLi TGN Ours

10% 75% 0.613 0.453 0.761 – 0.800 0.552 0.723 0.910
Enron 75% 10% 0.672 0.508 0.703 – 0.691 0.567 0.627 0.909

75% 75% 0.666 0.573 0.586 – 0.709 0.556 0.536 0.908
10% 75% 0.832 0.588 0.959 0.803 0.527 0.847 0.973 0.976

Reddit 75% 10% 0.910 0.294 0.960 0.644 0.511 0.928 0.967 0.966
75% 75% 0.880 0.298 0.933 0.680 0.494 0.924 0.955 0.915
10% 75% 0.602 0.576 0.833 – 0.675 0.546 0.825 0.969

UCI 75% 10% 0.723 0.431 0.816 – 0.745 0.517 0.821 0.967
75% 75% 0.718 0.423 0.829 – 0.750 0.601 0.775 0.954
10% 75% 0.950 0.584 0.964 0.644 0.500 0.824 0.969 0.977

Wikipedia 75% 10% 0.902 0.462 0.960 0.456 0.517 0.839 0.963 0.982
75% 75% 0.888 0.470 0.927 0.498 0.498 0.859 0.914 0.982
10% 75% 0.519 0.655 0.777 – 0.772 – 0.816 0.821

Ethereum 75% 10% 0.483 0.629 0.751 – 0.750 – 0.817 0.825
75% 75% 0.494 0.616 0.763 – 0.760 – 0.801 0.810

Table 4 present the results of edge prediction in the transductive setting. Our model
outperforms others in all cases except for the Ethereum dataset. It is consistent with the
reported results by Wang et al. (2021a) where the APAN model outperforms the TGN.
On the given dataset, NEF features give only slight additional improvement compared
to the vanilla TGN model. However, the APAN model seems to show poor performance
when node and edge features are available. It requires matching the internal embedding
dimension with external node and edge features. So it leads to the effective dimension
mismatch that prevents APAN to converge in the best point. Also, our model is suboptimal
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Table 6 Node classification, AUC-ROC. Best results in bold, second-best underlined.

Nodemask Edge mask DyRep Jodie TGAT APAN HiLi TGN Ours

10% 75% 0.531 0.421 0.589 0.500 0.509 0.635 0.659
Reddit (Transductive) 75% 10% 0.601 0.435 0.665 0.500 0.491 0.584 0.627

75% 75% 0.597 0.439 0.589 0.379 0.491 0.602 0.658
10% 75% 0.510 0.456 0.555 0.500 0.551 0.576 0.625

Reddit (Inductive) 75% 10% 0.544 0.539 0.512 0.542 0.476 0.495 0.563
75% 75% 0.521 0.567 0.435 0.603 0.524 0.592 0.584

on Reddit. It could be due to the dataset nature. Reddit is a user-post interaction, so the
user’s memory could be more important than NEF features, which aims to preserve how
the whole graph evolves. The metrics for HiLi (Chen et al., 2021) on the Ethereum data
are not presented in the table due to its inability to handle large graphs. It adds an identity
matrix of node quantity dimension as an additional static vector, which leads to enormous
memory consumption. The TigeCMN model is tested only on bipartite graphs because it
requires different embeddings for users and items.

The results on the inductive edge prediction (Table 5) are consistentwith the transductive
one. The main difference of this setting is that the APANmodel shows much worse results,
and our model outperforms it on all of the datasets. Similarly to the previous scenario,
TGN outperforms our model on Reddit.

Our model shows superior results on Reddit in transductive and inductive node
classification settings in almost all cases (Table 6). The general problem could be that NEF
features aim to capture the temporal motifs of the graph. So, when we pretrain our model
on the link prediction problem, we left only a small variation for further adaptation to the
node classification task.

In the end, despite some cases, our model consistently outperforms others. It seems that
capturing network-wide common patterns with CAW-based features generally offers an
improvement over existing models, although in some cases information added by these
features may be duplicated by other encoding modules.

BANKING RESULTS
As an industrial application of the proposed framework, we chose a pre-existing problem
posited by amajor European bankwith a corresponding dataset that consists of transactions
between different companies. In contrast to sequence-based methods for transactions
analysis (Babaev et al., 2019; Babaev et al., 2020; Fursov et al., 2021), temporal network
embedding provides new opportunities for analyzing relational activity between users and
can benefit downstream machine learning tasks.

Each transaction has a timestamp so that we can treat it as a temporal edge. It allows us
to consider only ‘‘edge events’’. We use the following edge features: transaction amount,
timestamp and transaction type (e.g., credit or state duty). We one-hot encode the type of
transaction, which gives us 50 edge features in total: 49 from one-hot encoding and one
from the transaction amount. These features were normalized.
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At first, we compared our model with the original TGN (Rossi et al., 2020) on a link
prediction task. We obtain the training and validation datasets consisting of transactions
from a regional subdivision of a major European bank for about one week. This dataset
contains about two million transactions. We select about 40,000 newest transactions to
test the dataset, and all the rest is given to the train, so test dataset transactions are always
newer than train transactions. We use the following procedure to check the performance of
our model on the test dataset. First, we split training data into small chunks (400 batches)
and gradually increase the number of chunks used to train the model. Each batch contains
512 transactions. The results are presented in Fig. 4.

We can see the very high performance of dynamic graph approach models. It can be
noticed that the performance of our model grows a little bit slower than for TGN (Rossi et
al., 2020), but after about 600,000 transactions, our model takes the lead. This slight time
lag in training is due to our model taking additional time to learn extra information about
interactions between nodes via learning CAW (Wang et al., 2021b) part of our model. This
extra information allows gaining better results at the end of training.

The architecture of our model and TGN (Rossi et al., 2020) model allows us to produce
node embeddings that can be used as input for a wide range of possible downstream tasks.
For our experiment, we have taken the prediction of company default as the downstream
task. The dataset contains about 5,000 companies, some of which will go bankrupt in a
specific period in the future (180 days), and others will not. To train a classification model
we used LightGBM (Ke et al., 2017). The obtained results were averaged over with 5-fold
cross-validation and presented in Table 7.

We can see that our best model has 9.2% higher AUC ROC when compared to the
TGN (Rossi et al., 2020). That means that extra information about interactions between
nodes captured by CAW (Wang et al., 2021b) part of our model is useful for classification
problems. We see also that the best performance is observed with a small CAW messages
shape. This is related to the structure of our dataset. Its number of edges is comparable
with the number of nodes. Thus the graph is sparse. Bigger CAW messages shapes can be
helpful in more dense graphs.

CONCLUSION
In this work, we proposed a novel model for temporal graph embedding (Fig. 2) that shows
improvement over existing methods (Rossi et al., 2020; Trivedi et al., 2019; Kumar, Zhang
& Leskovec, 2019) on various prediction tasks while preserving the ability to generate node
embeddings. Moreover, we implemented a novel experimental framework (Fig. 1) that
can process most kinds of graph data and an arbitrary dynamic graph inference model.
The experimental study demonstrates the applicability of our method to solving various
node/edge prediction tasks on temporal networks and significantly improving the existing
results.
In future, it is possible to improve the performance of our framework for its application
to the real-life temporal graph of bank’s transactions with tens of billions of nodes. It is
necessary to study efficient node/edge sampling strategies, choosing those that overcome
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Figure 4 Inductive edge prediction on transactions of regional subdivision of major European bank.
Full-size DOI: 10.7717/peerjcs.858/fig-4

Table 7 Node classification results based on node embeddings obtained from TGN and our proposed
model with feature dimension d being multiple of 8×2 shape.

Node Embeddings AUC-ROC

TGN 0.621±0.066
Our 0.678±0.059

the limitations of current models when scaling to large graphs while preserving highly-
informative edge features propagation.
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